Melting Heat Transfer in Boundary Layer Stagnation Point Flow of MHD Micro - polar Fluid towards a Stretching / Shrinking Surface

نویسندگان

  • Khilap Singh
  • Manoj Kumar
چکیده

The present study investigates the fluid flow and heat transfer characteristics occurring during the melting process due to a stretching / shrinking surface in micropolar fluid. A uniform magnetic field is applied normally to the surface. The governing equations representing fluid flow were transformed into nonlinear ordinary differential equations using similarity transformation. The equations thus obtained were solved numerically using the Runge–Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of the magnetic parameter on the fluid flow, couple stress coefficient and heat transfer characteristics, are illustrated graphically and discussed in detail. Significant changes were observed in the fluid flow, couple stress coefficient and heat transfer with respect to magnetic parameter. © 2014 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface

This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...

متن کامل

Stagnation-point flow of a viscous fluid towards a stretching surface with variable thickness and thermal ‎radiation‎

‎In the present analysis‎, ‎we study the boundary layer flow of an incompressible viscous fluid near the two-dimensional stagnation-point flow over a stretching surface‎. ‎The effects of variable thickness and radiation are also taken into account and assumed that the sheet is non-flat‎. ‎Using suitable transformations‎, ‎the governing partial differential equations are first converted to ordin...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

Effects of heat generation and thermal radiation on steady MHD flow near a stagnation point on a linear stretching sheet in porous medium and presence of variable thermal conductivity and mass transfer

The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream near a stagnation point on a non-conducting stretching sheet. Equations of continuity, momentum...

متن کامل

Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions

   An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015